THEORY OF SURFACES IN FOUR-DIMENSIONAL GALILEAN SPACE

  • A. Nurbayev Gulistan State University
Keywords: Galilean space, main curvature, second-order surfaces, surface indicator.

Abstract

By means of a special choice of coordinate lines of the surface in four-dimensional Galilean space, the first and second quadratic shape of the surface is defined.
It has been proved that the second-order surface equation in three-dimensional space can be converted to a canonical form by means of a special transformation, which is the rotation of the coordinate axes of three-dimensional Galilean space. Furthermore, the transformation matrix is an element of the Heisenberg group that is neither symmetric nor orthogonal.
In four-dimensional space R41 - the concept of a surface indicator is introduced and the main curvature of the surface is defined.

Author Biography

A. Nurbayev , Gulistan State University

Professor of the Mathematics Department

References

Theodore Shifrin. Differential Geometry: Curves and Surfaces. University of Georgia. 2012.
A. Artykbaev, D.D.Sokolov. «Geometriya v celom v ploskom prostranstve-vremeni» Tashkent. «Fan» 1991.g
A.V. Hachaturyan . «Geometriya Galileya» Izdatelstvo Moskovskogo centra nepreryvnogo matematicheskogo obrazovaniya Moskva • 2005
Rozenfeld B. A. Mnogomernye prostranstva. - M.: Nauka, 1966.
A.R. Nurbayev. «Properties of Special Elippsoids Family» European Academic Research. Vol VII, Issue 8/November 2018
I.M. Yaglom. “Princip otnositelnosti Galileya i neevklidova geometriya” M., Nauka, 1969
A. Artykbaev, B.M.Sultanov. “ Invariants of surface indicatrix in a special linear transformation” Matematics and statistics. 7(4) : 106-115,2019
Berdinskij D.A. “O minimalnyh poverhnostyah v gruppe Gejzenberga”, Vestnik Kemerovskogo gosudarstvennogo universiteta, 2011, № 3-1, 34–38
Rozenfeld B. A. “Neevklidovy prostranstva”. M., 1969. 10. Pogorelov A.V. “Geometriya Izdatelstvo”. Nauka. God. 1983
Published
2021-12-16
How to Cite
Nurbayev , A. 2021. “THEORY OF SURFACES IN FOUR-DIMENSIONAL GALILEAN SPACE ”. EurasianUnionScientists, December, 35-39. https://doi.org/10.31618/ESU.2413-9335.2021.1.92.1503.