FUZZY LINEAR PROGRAMMING PROBLEM AND APPLYING NEURAL NETWORKS TO ITS SOLUTION
Abstract
In present paper consider one economical problem- optimal planning of manufacture. In space of pair of fuzzy numbers this problem formulated as linear programming problem. Applying the certain techniques this problem reduced to classical linear programming problem. Obtained problem solved applying neural networks.
References
2. Facchinetti G., Giove S., Pacchiarotti N. Optimization of a fuzzy non linear function. Soft. Computing Journal, 6, 6, 2002, pp.476-480.
3. Aliev F.A., Niftiyev A.A., Zeynalov C.I. Optimal synthesis problem for the fuzzy systems. Optimal control, applications and methods. Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/oca.964.
4. Aliev F.A., Niftiyev A.A., Zeynalov C.I. Optimal synthesis problem for the fuzzy systems in semi-infinite interval. Appl. Comput. Math., 10(1), Special Issue, 2011, pp.97-105.
5. Aliev R.A., Aliev R.R. Nechetkie mnozhestva i sistemy. Baku, izd. AGNA, 1996,181c.
6. Aliev R.A. Modelling and stability analysis in fuzzy economics. Applied and Computational Mathematics, 2008; 7(1): pp.31-53.
7. Dubois D., Prade H. Towards fuzzy differential calculas. I. Integration of fuzzy mapping, Fuzzy Sets and Systems, 8, 1(1982), pp.1-17.
8. Moore R.E. Interval analysis. Prentice – Hall., New – Jersey, 1966.
9. Larin V.B. Zadachi upravleniya sistemami soderzhashimi neopredelennost. Prikladnaya Mehanika, №2, 2002, s. 681-720.
10. Alguliev R.M., Alyguliev R.M. Alekperov R.K. Podhod k optimalnomu naznacheniyu zadanij v raspredelennoj sisteme. Problemy upravleniya i informatiki. 2004. №5.
11. Gorban A. N., Obobshennaya approksimacionnaya teorema i vychislitelnye vozmozhnosti nejronnyh setej, Sibirskij zhurnal vychislitelnoj matematiki, 1998. T.1, № 1. S. 1224.
12. Nejrokompyutery i ih primenenie: Kniga 6 – «Nejromatematika» (pod redakciej A.I.Galushkina), Moskva, IPRZhR, 2002, 448s.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.