FORMATION OF UNSTEADINESS OF THE WATER FLOW DURING THE COUPLING OF THE BYEFS

  • V.A Fartukov FSUE VO RGAU-MSHA named after K.A. Timiryazev
  • D.M Vasiliev, Faculty of Physics, Higher School of Economics
Keywords: hydraulic jump, water flow structure, energy dissipation, bifurcation, self-oscillating process.

Abstract

The formation of nonlinear oscillations arising in the zone of the jump coupling of depths in the downstream
of hydraulic structures leads to the formation of nonlinear stationary oscillations. This mode of water flow is
accompanied by waves with a characteristic amplitude and length, which are one of the determining factors in
choosing the design and calculating the geometric parameters of energy dampers in the downstream of hydraulic
structures.
A system of nonlinear equations in which the energy of the water flow dissipates at large amplitudes of the
water surface oscillation and is generated at small values of the oscillation amplitudes, allows us to describe the
physical process occurring in the zone of the jump coupling of the beefs. The system describes the ongoing process
by limiting cycles that fluctuate around a certain state in which the inflow and dissipation of energy are balanced.
This state of the process determines the presence of bifurcations of vector fields of water flow in a hydraulic jump.
In an oscillatory system, undamped oscillations can practically exist in the presence of some energy source
that compensates for the energy consumption caused by the presence of dissipative forces.

Author Biographies

V.A Fartukov, FSUE VO RGAU-MSHA named after K.A. Timiryazev

Associate Professor of the Department of Hydraulic Structures

D.M Vasiliev,, Faculty of Physics, Higher School of Economics

3rd year student

References

1. Gun'ko F.G. Klassifikacija form soprjazhenija b'efov v prostranstvennyh uslovijah dlja sluchaev plotin s ustupom pri gladkom vodoboe i bez ustupa pri nalichii vodobojnoj stenki. Izv. VNIIG im. Vedeneeva, L., 1962, t.71, S.39.59.
2. Grushevskij M. S. Neustanovivsheesja dvizhenie vody v rekah i kanalah. - L.: Gidrometeoizdat, 1982. - 288 s.
3. Kjunzh Zh. A., Holli F. M., Vervej A. Chislennye metody v zadachah rechnoj gidravliki. - M.: Jenergoatomizdat, 1985. - 256 s.
4. Zemljannikova M.V. Fartukov V.A. «Obobshhennye nelinejnye uravnenija lokal'noj nestacionarnosti». Sbornik materialov Vserossijskoj nauchno- tehnicheskoj konferencii «Jekologicheskaja ustojchivost' prirodnyh sistem i rol' prirodoobustrojstva v ee obespechenii», M. 2003, str.136-137.
5. Zemljannikova M.V. Fartukov V.A. «Uravnenija lokal'noj nestacionarnosti pri pryzhkovyh soprjazhenijah». Sbornik materialov Vserossijskoj nauchno-tehnicheskoj konferencii «Jekologicheskaja ustojchivost' prirodnyh sistem i rol' prirodoobustrojstva v ee obespechenii», M. 2003, str. 137-138.
6. Najfje A.Ju. Metody vozmushhenij, M., 1976.
7. Moiseev N.N. «Asimptoticheskie metody nelinejnoj mehaniki» M.: Nauka, 1969.
8. Kuz'mina R.P. «Asimptoticheskie metody dlja obyknovennyh differencial'nyh uravnenij». M.: Editorial URSS, 2003.
9. Gukenhejmer Dzh., Holms F. «Nelinejnye kolebanija, dinamicheskie sistemy i bifurkacii vektornyh polej». Moskva-Izhevsk: Institut komp'juternyh issledovanij, 2002.
10. Bogoljubov N.N., Mitropol'skij Ju.A. Asimptoticheskie metody v teorii nelinejnyh kolebanij. M.: Gosudarstvennoe izdatel'stvo tehniko-teoreticheskoj literatury, 1955.
Published
2023-01-06
How to Cite
Fartukov, V.A, and D.M Vasiliev,. 2023. “FORMATION OF UNSTEADINESS OF THE WATER FLOW DURING THE COUPLING OF THE BYEFS”. EurasianUnionScientists, January, 03-08. https://fizmat-tech.euroasia-science.ru/index.php/Euroasia/article/view/841.