ON PROPAGATION OF WAVES IN THREE-COMPONENT POROUS MEDIA

  • V. Polenov Air Force Academy of Professor E. Zhukovsky and Y.A. Gagarin
  • D. Nitsak Air Force Academy of Professor E. Zhukovsky and Y.A. Gagarin
Keywords: elasticity, medium, fluid, stress, deformation, displacement, velosity.

Abstract

A mathematical model of wave propagation in three-component elastic media saturated with liquid and gas, given by elastic moduli and coefficients characterizing the porosity and compressibility of the liquid and gas, is considered.

Three-component media must be taken into account when solving a significant number of applied problems arising in various fields of human activity (soils, porous sintered composite materials, building materials, oil industry, etc.). However, the complexity of describing the effects of the interaction of components, heat transfer, and other related processes has led to the fact that, until now, generally accepted models (elastic medium-liquidgas) have not been fully developed. Therefore, it is of interest to develop such a mathematical three-component model that could take into account the porosity of such a medium.

In this publication, based on the theory of discontinuities, the generalized Hooke's law, and the equations of motion of a medium, formulas are obtained for determining the propagation velocity of a wave surface (acceleration waves) in three-component porous media

Author Biographies

V. Polenov, Air Force Academy of Professor E. Zhukovsky and Y.A. Gagarin

doctor of physics and mathematics

D. Nitsak , Air Force Academy of Professor E. Zhukovsky and Y.A. Gagarin

doctor of physics and mathematics

References

Biot M.A. Theory propagation of elastic waves in a fluid-saturated porous solid I. Low-Frequency Range//J. Acoust. Soc. America. 1956. V. 28. № 2. pp. 168 178.
Biot M.A. Theory propagation of elastic waves in a fluid- saturated porous solid. II. Higher Frequency Range//J. Acoust. Soc. America. -1956. V.-28. № 2. pp.179 – 191.
Maslikova T.I., Polenov V.S. O rasprostranenii nestacionarnyh uprugih voln v odnorodnyh poristyh sredah//Izv. RAN. MTT. 2005. № 1. S. 104 108.
Polenov V.S., Chigarev A.V. Mathematical modeling of shock waves in inhomogeneous viscoelastic two component media // Journal of Applied Mathematics and Physics.-2018. - 6. (5). - P. 997-1005.
Polenov V.S. Osnovnye uravneniya dinamicheskogo deformirovaniya trehkomponentnyh sred//Sovremennye tendencii razvitiya estestvoznaniya i tehnicheskih nauk: Sbornik nauchnyh trudov po materialam MNPK. Belgorod. 2018. S. 31-34.
Polenov V.S. Nicak D.A. Matematicheskoe modelirovanie akusticheskoj emissii v nasyshennyh zhidkostyu dvuhkomponentnyh sredah //Nauka Rossii: celi i zadachi. Sb. nauchnyh trudov po materialam XI MNK, Ekaterinburg. ch. 2 2018. S. 52-58.
Tomas T. Plasticheskoe techenie i razrushenie v tverdyh telah//M.: Mir, 1964. 308 s.
Bykovcev G.I., Vervejko N.D. O rasprostranenii voln v uprugo-vyazkoplasticheskoj srede// Mehanika tverdogo tela. 1966. № 4 S. 111-123.
Ilin V.A., Poznyak E.G. Linejnaya algebra//M.: 1984. 204 s.
Bronshtejn I.N. Semendyaev K.A. Spravochnik po matematike dlya inzhenerov i uchashihsya VTUZOV//M.: 1964. 608 s.
Published
2021-12-16
How to Cite
Polenov, V., and D. Nitsak. 2021. “ON PROPAGATION OF WAVES IN THREE-COMPONENT POROUS MEDIA ”. EurasianUnionScientists, December, 42-49. https://fizmat-tech.euroasia-science.ru/index.php/Euroasia/article/view/772.