FINITE-DIMENSIONAL APPROXIMATION OF THE SOLUTION OF THE CONTROL PROBLEM WITH MINIMUM ENERGY BY THE PROCESS OF HEAT CONDUCTIVITY WITH PULSE IMPACT

  • R. Mamedov Azerbaijan State University of Oil and Industry
  • S. Gasymov Azerbaijan State University of Oil and Industry
  • S. Alieva Azerbaijan State University of Oil and Industry
Keywords: optimal impulse control, heat conduction process, approximate solution, Fourier method, problem of moments.

Abstract

The paper considers an approximate solution of the control problem with the minimum energy for an object described by the heat conduction equation. In this case, the process is described by a linear parabolic equation and the system is controlled by impulse external influences.
The optimal control problem consists in determining a control parameter from the class of admissible controls such that the desired temperature distribution is achieved at the final time instant. In this case, the expenditure of energy, which is expressed by the quadratic functional, should be minimal.

Author Biography

R. Mamedov , Azerbaijan State University of Oil and Industry

candidate phys.-math. Sci., Associate Professor of the Department of General and Applied Mathematics

References

1. Aliev F.A., MutallimovM.M., Askerov I.M. Asimptoticheskij metod resheniya zadachi postroeniya optimalnyh rezhimov gazliftnogo processa. DokladyNAN Azerbajdzhana, tomLXVI, №1, 2010, s. 26-33
2. DyhtaV.A., Samsonyuk O.N. Optimalnoe impulsnoe upravlenie s prilozheniyami. –M.: FIZMATLIT, 2003.-256 s.
3. Dyhta V.A. Princip maksimuma dlya optimalnyh impulsnyh processov pri ogranicheniyah na obraz upravlyayushej mery //Optimizaciya, upravlenie, intellekt. – Zhurn. Vseros. Assoc. Matem.programmirovaniyav ANN. – 1995, - №1. – S. 100-109.
4. Bressan A., Rampazzo F. Impulsive control system with commutative vector fields // J.Optim. Theory and Appl. – 1991. – V.71, №1. –P.67-83.
5. Bressan A., Rampazzo F. Impulsive control systems without commutativity assumptions // J.Optim. Theory and Appl. – 1994. – V.81, №3. –P.435-457.
6. Egorov A.I. Osnovy teorii upravleniya. M.: FIZMATLIT, 2004. – 504 s.
7. Egorov A.I. Optimalnoe upravlenie teplovymi i diffuzionnymi processami. M.: Nauka, 1978. -460 c.
8. Mamedov R.S. Pulse control of process of heat conductivity with minimal energy. The international Conference “Problems of cybernetics and informatics” Vol. II ,Baku 2006.
9. Mamedov R.S., Qasimov S.Y. Solution of the synthesis problem of boundary optimal rod cooling process with a heat conductive viscosity//“EUREKA” physics Enginering,24(2017), 42-49.
10. Abdullayev V.M. Identification of the function of response to loading for stationary systems // Cybern. Syst. Anal. 2017. Vol.53., No. 2, p. 417-425.
11. Aida-zade K.R., Abdullayev V.M.Control Synthesis for Temperature Maintaining Process in a Heat Supply Problem. // Cybern. Syst. Anal. 2020. Vol. 56, No.3, P.380-391.
12. Aida-zade K.R., Abdullayev V.M. Optimizing placement of the control points at synthesis of the heating process control // Autom. Remote Control, 2017. Vol. 78. No.9. P. 1585–1599.
Published
2021-09-14
How to Cite
Mamedov , R., S. Gasymov, and S. Alieva. 2021. “FINITE-DIMENSIONAL APPROXIMATION OF THE SOLUTION OF THE CONTROL PROBLEM WITH MINIMUM ENERGY BY THE PROCESS OF HEAT CONDUCTIVITY WITH PULSE IMPACT”. EurasianUnionScientists, September, 18-24. https://fizmat-tech.euroasia-science.ru/index.php/Euroasia/article/view/741.