MODELING CALCULATION OF THE CORROSION RATE OF LOW CARBON STEEL IN HEAT AND POWER SYSTEMS
Abstract
This article is about electrochemical analysis system of passive films corrosion properties of the thermal power equipment heating surfaces. It was found that forecasting the low carbon steel corrosion rate in thermal power systems is possible based on the multiple regression equations, which includes the amount of silicon oxide and iron hydroxide phases in the films, the fraction of free area and the active component of impedance of the films in the alkaline electrolyte and mercury. Construction of the regression equation should be carried out with the preliminary classification of data on the quantities of the active component of the film impedance of mercury and an alkaline electrolyte.
References
[2] Efimov A.A.,SemenovV.G.,Kostin M.M.,MiroshnichenkoI.V. Analiz fazovogo sostava otlozhenij produktov korrozii na poverhnostjah trubnogo puchka parogeneratora PG-440 metodommessbaujerovskojspektroskopii // Teplojenergetika. – 2009, №2, pp. 64-65.
[3] Petrova T.I. Vlijanie teplovogo potoka na skorost' obrazovanija otlozhenij produktov korrozii zheleza i medi v kotlah / T.I. Petrova, V.I. Kashinskij, V.N. Semenov, V.V. Makrushin, A.E. Verhovskij // Teplojenergetika. – 2008, №7, pp. 2-5.
[4] Krasnoperov V.M. Model' osazhdenija produktov korrozii na neobogrevaemyh poverhnostjah truboprovodov / V.M. Krasnoperov //Teplojenergetika. – 2008, №5, pp. 36-38
[5] Kozlova T.V., Lipkin S.M., Lipkina T.V., Lipkin M.S., Breslavec V.P., Shishka N.V., Ul'janov A.V. Metody issledovanija i korrozionnyj monitoring // Korrozija: materialy, zashhita, 2016, №10, pp. 36-38.
[6] Nafikova N.G., Kaluzhina S.A. Osobennosti anodnogo povedenija zheleza v gidrokarbonatnyh sredah pri var''irovanii solesoderzhanija i termicheskih uslovij // Kondensirovannye sredy i mezhfaznye granicy, 2011, vol. 13, № 2, pp. 178-183
[7] Nafikova N.G., Kaluzhina S.A., Lapunina L.N. Anodnoe povedenie zheleza v gidrokarbonatnyh sredah s dobavkami nitrat- i sul''fat- ionov v razlichnyh termicheskih uslovijah // Kondensirovannye sredy i mezhfaznye granicy, 2010, vol. 12, № 2, pp. 149-153
[8] Rubashov A.M. Zashhita ot vnutrennej korrozii truboprovodov vodjanyh teplovyh setej / A.M. Rubashov, Ju.V. Balaban-Irmenin, V.M. Lipovskih. – Pererabotannoe, dopolnennoe, 2-e izdanie. – M: «Novosti teplosnabzhenija», 2008. – 288p.
[9] P. Ghods, O.B. Isgor, F. Benseba, D. Kingston, Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution, Corrosion Science 58 (2012) 159–167.
[10] P. Ghods, Multi-scale investigation of the formation and breakdown of passive films on carbon steel rebar in concrete, Ph.D. Dissertation, Carleton University, Ottawa, 2010.
[11] P. Ghods, O.B. Isgor, G.A. McRae, G.P. Gu, Electrochemical investigation of chloride-induced depassivation of black steel rebar under simulated service conditions, Corrosion Science 52 (2010) 1649– 1659.
[12] H. BurakGunay, PouriaGhods, O. BurkanIsgor, Graham J.C. Carpenter, Xiaohua Wu, Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS, Applied Surface Science 274 (2013) 195– 202 p.
[13] Liang Wei, Xiaolu Pang, Kewei Gao, Effect of small amount of H2S on the corrosion behavior of carbonsteel in the dynamic supercritical CO2 environments, Corrosion Science 103 (2016) 132–144.
[14] Goldstein, J. I. et al. (2003) Scanning electron microscopy and x-ray microanalysis. Springer.ISBN 0306472929.
[15] A.T Motta, Zirconium alloys for supercritical water reactor applications: challenges and possibilities, J. Nuclear Materials. 371 (2007) 61-75.
[16] Lysenko E.A. Issledovanie produktov korrozii legirovannyh I uglerodistyh stalej v paroprovodah energeticheskogo oborudovanija. / E.A. Lysenko, T.V. Lipkina, V.G. Shishka, M.S. Lipkin//Izvestija vysshih uchebnyh zavedenij Severokavkazskij region. Tehnicheskie nauki. Special'nyj vypusk «Aktual'nye problem mashinostroenija», 2011. pp. 25-33
[17] Kozlova T.V. Prognozirovanie zashhitnyh svojstv oksidnyh plenok metodamij elektrohimicheskoj diagnostiki / T.V. Kozlova, T.V. Lipkina, S.A. Pozhidaeva, Ju.N. Nikolaeva // Problemy sinergetiki v tribologii, tribojelektrohimii, materialovedenii i mehatronike: sb.nauch.st. pomaterialy 13 Mezhdunar.nauch.-prakt. konf.- g.Novocherkassk: JuRGPU(NPI), 2015. – pp. 92-101.
[18] Kozlova T.V. Diagnostika zashhitnyh svojstv oksidnyh plenok na vnutrennih poverhnostjah paroprovodnyh trub na osnove jelektrohimicheskih metodov issledovanija / T.V. Kozlova, T.V. Lipkina, S.M. Lipkin, V.N. Volkov // Kontrol'. Diagnostika. – 2015, №12 (210), pp. 34-40.
[19] Kozlova T., Lipkina T., Sedov A., Electrochemical Oxide Films Corrosion Properties Diagnosis System for the Thermal Power Equipment
[20] Nadtoka V.I. Patent RF № 2463575, 2012 [21] Novyjspravochnikhimika I tehnologa. Jelektrodnye processy. Himicheskaja kinetika I diffuzija. Kolloidnaja himija. – S.-Pb.: ANONPO «Prfessional», 2004. – 838p.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.